
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023867
TITLE: Optimizing Finite Element Programs on the Cray X1 Using
Coloring Schemes

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED

Optimizing Finite Element Programs on the Cray X1 Using Coloring Schemes

Fred T. Tracy
USACE Engineering Research and Development Center (ERDC), Vicksburg, MS

Fred.T.Tracy@erdc.usace.army.mil

Abstract now runs eight times faster when using the coloring
scheme described in this paper.

Using the Environmental Quality Modeling program
FEMWATER as a test-bed code, 27 percent of the time 2. FEMWATER
needed to run a given groundwater flow application on
the ERDC Cray X1 using four multistream processors FEMWATER4 '5 I is a standard Galerkin finite
(MSPs) was spent assembling the global stiffness matrix, element program for flow and transport. METIS I21 was
This poor performance is because the above code cannot used to partition the mesh. A conjugate gradient, iterative
multistream without help. The technique of "coloring" solver with an incomplete lower-upper preconditioner i1

the elements makes it possible to multistream this section was used to solve the resulting system of liniear equations
of the code, thus taking advantage of the hardware obtained from a Picard iteration of the nonlinear
capability of the machine. Coloring for assembling the equations. The ghost node updates are done in this study
global stiffness matrix involves dividing the elements into using MPI.
different groups such that no node point touches any
elements with the same color. This paper will present a 2.1. Test Problem.
simple coloring algorithm in FORTRAN and show how it
was implemented into FEMWA TER to achieve
wasimemnted into FMWA C t l tn aive aFigure 1 illustrates the top view of a itypical three-
multistreaming on the ERDC Cray X1. It will then givedet dimensional (3-D) finite element mesh fora remediation
detailed description on how the program was modified, sdy Seralyrsreudtom elhoIlayr
what compiler options were used, and what compiler study. Several layers are used to model the soil layers

directives worked best. Finally, timing results will be underneath this surface. The mesh has 102,996 nodes and
givn. omeproram tht hve oodMPI(or 187,902 3-13 prism elements. Runs usingtwo and fourgiven. Some programs that have good MPI (or times the original number of elements are also done.

equivalent) communication are better suited for running t

in the single-streamed processor (SSP) mode. In the SSP
mode, coloring of the elements is not needed for
assembling the global stiffness matrix. Timings for
running in the SSP mode will be shown, too. Plume Perimeter I

Bace Perimeter

1. Introduction L
Vectorizing and multistreaming application codes on Mmiripal Wells

the Cray Xl is essential to good performance. Because of Irrig. gation Ditr h
this, bottlenecks in code performance can occur in
surprising places. Sometimes the algorithm is just not
suited for the Xl. Many times, however, special
techniques and algorithms can be applied to remedy the
situation. This paper illustrates one such example of Figure 1. FEMWATER test problem
where "coloring" the finite elements into separate groups
can significantly help. Assembling the element stiffness
matrices into the global stiffness matrix originally took 27
percent of the total run time. This part of the program

U.S. Government Work Not Protected by U.S. Copyright 313

2.2. Assembly of Global Stiffness Matrix.
do ig = 1, no-of.groups

Figure 2 shows the original assembly process. mml = starting-element_of_group(ig)

Subroutine fq468 computes element stiffness matrix m2 startingelement-of-group(ig + 1)

information. The i and j loops are from 1 to 6, do mm = mml, mm2

representing prism elements. ni is the node or row m = mthelement-of-.group-ig(mm)
number in the global stiffness matrix, and jj is the

column number in the global stiffness matrix. These call fq468 (m)

indices were reversed in storage to have stride 1 do i = 1 6

computations. Finally, a search for jj must be done ni = iem(i)
inside the j loop. Figure 3 shows how coloring modifies do j = 1, 6

the basic routine. This modified version is described in

more detail below. c Search here to find the column number jj
for the row ni.

3. Coloring globalstiff(jj, ni) =

global.stiff(jj, ni) +

Coloring for assembling the global stiffness matrix & elementstiff(i, j)
end doinvolves dividing the elements into different groups such edd

that no node point touches any elements with the same end do
color. Figure 4 illustrates the process of generating the end do
different groups through coloring. The algorithm Figure 3. Modified assembly process after coloring
presented in this paper written in FORTRAN (see Figure
5) is very similar to that discussed in Reference 3. Figure 4. Coloring the elements

Starting with color 1 (blue), an element is first painted.
Then all elements that touch this element are marked for
not allowing blue. A second blue element is done, again
marking elements touching the new blue element as not
allowing blue. After all the possible blue elements have
been painted, this procedure is repeated for the second
color (red). This algorithm is completed when all

elements have been provided a color. Finally, all

elements that contain the same color belong to the same
group.

The code in Figure 2 can now be changed to the code
in Figure 3. The do loop over mm can now be
multistreamed and vectorized. This will now be

described.

do m = 1, nel

call fq468 (m)

do i = 1, 6
ni = iem(i)
do j = 1, 6

c Search here to find the column number jj
for the row ni.

globalstiff(jj, ni) =
global-stiff(jj, ni) +

& element_stiff(i, j)
end do

end do
end do
Figure 2. Original assembly process before coloring

314

4. Multistreaming and Vectorizing
C Initialize colors of all elements to
zero. no of eements) = Space allows a brief description ofj what was then

i = 0 done to achieve vectorization and multistreaming of the
iquit = 0 code. Figure 6 shows a portion of the new algorithm with

compiler notation provided. This listing was generated
do while ((i .1t. max no colors) .and. using the command,
(iquit .eq. 0))

103. 1 --------- < do ig = 1, nog!

105. 1 mml = istg(ig)
c Go through all node points to try to 106. 1 mm2 = istg(ig + 1) - 1
color elements with i. I

do n = 1, no.node-points 108. 1 !csd$ parallel do private
mfound = 0 (mm, m, node, mtyp,
do m = 1, 109. 1 !csd$& alp, por, iq, iem,

noelementsconnected to noden ni, jq, nj)
if {an element has color il mfound =

1 115. 1 M ------- < do mm = mml,Imm2
end do I
if (mfound .eq. 0) then 117. 1 M m = ielg(mn)
ielfirstzero = 0 118. 1 M NODE = IJNOD(M)
do m = 1, 120. 1 M MTYP = IE(M, 9)

noelementsconnected to noden 121. 1 M ALP = PROPF(7, MTYP)
{If element m has icolor = 0, set 122. 1 M POR = PROPF(8, MTYP)

iel firstzero = m} 124. 1 M MVs---< DO IQ = 1, NODE
end do 125. 1 M MVs IEM(IQ) = IE(M, IQ)
if (iel firstzero .ne. 0) then 126. 1 M MVs---> END DO

c Set element to color i here.
icolor(iel_first zero) =Intermediate computations.

c Set the color of all elements touching 276. 1 M !dir$ concurrent

ielfirstzero to -1 277. 1 M MV ---- < DO IQ = I,!NODE

c if no color has been assigned yet. 278. 1 M MV NI = IEM(IQ)

do i = 1, 279. 1 M MV RLD(NI) = RLD(NI) +

nonodes-of iel firstzero RQ(IQ) I
do k = 1, 280. 1 M MV Mr-< DO JQ = 1, NODE

noelements-connected to-node-j 281. 1 M MV Mr NJ = IEM(JQ)
ielnk o282. 1 M MV Mr QA(IQ, JQ) =

kth element connected to node n QA(IQ, JQ) * DELTI
if (icolor(iel-k) .eq. 0) 285. 1 M MV Mr RLD(NI) = RLD(NI)

icolor(iel-k) = - 1 + (QA(IQ, JQ)- I
end do 286. 1 M MV Mr & W2 *i QB(IQ, JQ))

end do * HP(NJ) I

end if 298. 1 M MV Mr cmatrc(iw(iq, jq,

end if m), ni) =

end do 299. 1 M MV Mr & cmatrx(iw(iq,
jq, m), ni) +

c Clean up -l's for the next color and 300. 1 M MV Mr & qa(iq, jq) + wl

check for termination. * qb(iq, jq) I

iquit = 1 301. 1 M MV Mr-> END DO

do n = 1, no-of elements 302. 1 M MV ---- > END DO

if (icolor(n) .eq. -1) then
icolor(n) = 0 305. 1 M ------- > end do

iquit = 0 306. 1 !csd$ end parallel do

end if >
end do 310. 1-----------> end do _

Figure 6. Assembly process showing compiler
end do notations

Figure 5. Coloring algorithm in FORTRAN

315

ftn -c -03,aggress -rm fasemb xl.f 5. Performance Results
The meaning of the notations are as follows:

M-Multistreamed r-unrolled Table 1 shows timing results for the original mesh,

V-Vectorized s-short loop twice the size of the original mesh, eight times the size of

The changes to the original code are as follows: the original mesh, and sixteen times the size of the

1. Change loops to use the coloring algorithm original mesh. For each problem, the modified MSP

(Figure 3). version of the assembly process was sped up
approximately eight times. The problems were also run

2. Add compiler directives (lines 108-109, 276, using 16 SSPs. Despite the good MPI communication,
306 of Figure 6). Sometimes the Cray the modified MSP version runs four times faster than the
streaming directives (csd) work, and original SSP version. Coloring of elements is not needed
sometimes the !dir concurrent works, in the SSP mode, because this is for multistreaming only.

In this case, using both of them was required.

3. The search to find the column number j j for Table 1. Xl timings (sec) for 4 MSPs or 16 SSPs
the row ni is a bottleneck. Therefore, a one- Nodes 102,996 197,409 763,887 1,519,191
time calculation was made to avoid this search Elements 187,902 375,804 1 ,503,216 3,006,432
(variable iw in lines 298-300 of Figure 6). Mesh size lX 2X 8X 16X

increase
4. Manually inline subroutine fq4 6 8. Total time -

5. Remove error print statements until after the MSP- 745 1,419 5,444 11,171

important loops. original
Total time -

An alternate way of dealing with these loops is to get SSP - 257 493 1,958 3,636
them to unroll as discussed in Reference 3. To test this, original

the loops were manually unrolled creating hundreds of Assembly
time- MSP 187 379 1,458 2,733

lines as illustrated in Figure 7. - original
Assembly

108. 1 !csd$ parallel do private (mm, time-MSP 23 46 176 330
m, node, mtyp, - modified

109. 1 !csd$& alp, por, iq, iem, ni, Assembly 8.1 8.2 8.3 8.3
jq, nj) MSPRatio

Assembly
time- SSP 81 158 604 1,165115. 1 MV-< do mm = mml, mm2 -original

117. 1 MV m = ielg(mm)
Acknowledgment

127. 1 MV IEM(l) = IE(M, 1)
128. 1 MV IEM(2) = IE(M, 2) This work was supported in part by a grant of
129. 1 MV IEM(3) = IE(M, 3)
130. 1 MV IEM(4) = IE(M, 4) computer time from the DoD High Performance

Computing Modernization Program at the ERDC MSRC,
Information Technology Laboratory, Vicksburg, MS.

305. 1 MV-> end do

306. 1 !csd$ end parallel do References

Figure 7. Assembly process using unrolling 1. Dongara, J.J., D.C. Sorensen, and H.A. van der Vorst,

The timings were the same as that achieved from the "Numerical Linear Algebra for High-Performance Computers."

way Figure 6 shows it; therefore, the results in Figure 6 SIAM, Philadelphia, PA, 1998, p. 203.

represent the best effort for these loops. 2. Karypis, G., METIS (computer program library),
http://www.users.cs.umn.edu/-karvpis/metis/metis.html,
University of Minnesota, MN, 2004.

3. Kornkven, E. and A. Johnson., SC2003 Tutorial M-8, "Vector
Performance Programming." Phoenix, AR, 2003.

4. Lin, H.J., D.R. Richards, G.T. Yeh, J. Cheng, H. Cheng, and
N.L. Jones, "FEMWATER: A Three-Dimensional Finite
Element Computer Model for Simulating Density-Dependent
Flow and Transport in Variably Saturated Media." Technical

316

Report CHL-97-12, US Army Engineer Research and Parallelized Groundwater Model FEMWATER to a Deep Mine

Development Center (ERDC), Vicksburg, MS, 1997. Project and the Remediation of a Large Military Site." DoD

5. Tracy, F.T., C.A. Talbot, J.P. Holland, S.J. Turnbull, T.L. HPCMP Users Group Conference Proceedings, Monterey, CA,
McGehee, and B.P. Donnell, "The Application of the 1999.

317

